Algebraic solutions to multidimensional minimax location problems with Chebyshev distance

نویسنده

  • Nikolai K. Krivulin
چکیده

Multidimensional minimax single facility location problems with Chebyshev distance are examined within the framework of idempotent algebra. A new algebraic solution based on an extremal property of the eigenvalues of irreducible matrices is given. The solution reduces both unconstrained and constrained location problems to evaluation of the eigenvalue and eigenvectors of an appropriate matrix. Key-Words: Single facility location problem, Chebyshev distance, Idempotent semifield, Eigenvalue, Eigenvector

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algebraic Approach to Multidimensional Minimax Location Problems with Chebyshev Distance

Minimax single facility location problems in multidimensional space with Chebyshev distance are examined within the framework of idempotent algebra. The aim of the study is twofold: first, to give a new algebraic solution to the location problems, and second, to extend the area of application of idempotent algebra. A new algebraic approach based on investigation of extremal properties of eigenv...

متن کامل

A New Algebraic Solution to Multidimensional Minimax Location Problems with Chebyshev Distance

Both unconstrained and constrained minimax single facility location problems are considered in multidimensional space with Chebyshev distance. A new solution approach is proposed within the framework of idempotent algebra to reduce the problems to solving linear vector equations and minimizing functionals defined on some idempotent semimodule. The approach offers a solution in a closed form tha...

متن کامل

Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis

We present a multidimensional optimization problem that is formulated and solved in the tropical mathematics setting. The problem consists in minimizing a nonlinear objective function defined on vectors in a finite-dimensional semimodule over an idempotent semifield by means of a conjugate transposition operator, subject to the constraints in the form of linear vector inequalities. A complete d...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Robust Solutions to l 1 , l 2 , and l 1 Uncertain LinearApproximation Problems using Convex Optimization 1

We present minimax and stochastic formulations of some linear approximation problems with uncertain data in R n equipped with the Euclidean (l2), Absolute-sum (l1) or Chebyshev (l1) norms. We then show that these problems can be solved using convex optimization. Our results parallel and extend the work of El-Ghaoui and Lebret on robust least squares 3], and the work of Ben-Tal and Nemirovski on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1212.6085  شماره 

صفحات  -

تاریخ انتشار 2011